Pembahasan-Soal-Ujian-Profesi-Aktuaris

Pembahasan Ujian PAI: A10 – No. 12 – November 2016

Pembahasan Soal Ujian Profesi Aktuaris

Institusi : Persatuan Aktuaris Indonesia (PAI)
Mata Ujian : Matematika Keuangan
Periode Ujian : November 2016
Nomor Soal : 12

SOAL

Bapak Budi membeli sebuah anuitas meningkat (increasing annuity) selama 5 tahun sebesar X. Bapak Budi akan menerima Rp 2 jt pada akhir bulan pertama, Rp 4 juta pada akhir bulan kedua, dan setiap akhir bulan berikutnya, pembayaran meningkat sebesar Rp 2 juta. Diketahui tingkat bunga nominal setahun yang dikonversikan kwartalan adalan 9%. Berapakah X? Pilihlah jawaban yang paling mendekati.

  1. Rp 2.730 juta
  2. Rp 2.970 juta
  3. Rp 3.120 juta
  4. Rp 3.270 juta
  5. Rp 3.730 juta
[showhide type more_text=”Kunci Jawaban & Pembahasan” less_text=”Sembunyikan Kunci Jawaban & Pembahasan”]
Diketahui \({i^{(4)}} = 9\% \) \(\frac{{{i^{(4)}}}}{4} = \frac{{9\% }}{4} = 2,25\% \) \({n_{kwartalan}} = 5×4 = 20\) \({n_{bulanan}} = 5×12 = 60\)
Rumus yang digunakan \({\left( {1 + \frac{{{i^{(4)}}}}{4}} \right)^4} = {\left( {1 + \frac{j}{{12}}} \right)^{12}}\) \(X = P{a_{\left. {\overline {\, n \,}}\! \right| \frac{j}{{12}}}} + Q\left( {\frac{{{a_{\left. {\overline {\, n \,}}\! \right| \frac{j}{{12}}}} – n{v^n}}}{{\frac{j}{{12}}}}} \right)\)
Proses pengerjaan \({\left( {1 + \frac{{{i^{(4)}}}}{4}} \right)^4} = {\left( {1 + \frac{j}{{12}}} \right)^{12}}\) \(\frac{j}{{12}} = 0,00744 = 0,744\% \) \(X = P{a_{\left. {\overline {\,  n \,}}\! \right| \frac{j}{{12}}}} + Q\left( {\frac{{{a_{\left. {\overline {\,  n \,}}\! \right| \frac{j}{{12}}}} – n{v^n}}}{{\frac{j}{{12}}}}} \right)\) \(X = 2{a_{\left. {\overline {\,  {60} \,}}\! \right| 0,744\% }} + 2\left( {\frac{{{a_{\left. {\overline {\,  {60} \,}}\! \right| 0,744\% }} – 60{v^{60}}}}{{0,744\% }}} \right)\) \(X = 2.729,172 \approx 2.730juta\)
Jawaban a. Rp 2.730 juta
[/showhide]

Leave A Comment

You must be logged in to post a comment