Maka |
\({}_{20}{V_{45}} = {P_{45}}\frac{{{{\ddot a}_{45:\left. {\overline {\, {20} \,}}\! \right| }}}}{{{}_{20}{E_{45}}}} – \frac{{{A_{\mathop {45}\limits^| :\left. {\overline {\, {20} \,}}\! \right| }}}}{{{}_{20}{E_{45}}}}\)
\({}_{20}{V_{45}} = {P_{45}}\frac{1}{{{P_{45:\mathop {\left. {\overline {\, {20} \,}}\! \right| }\limits^| }}}} – \frac{{{A_{45:\left. {\overline {\, {20} \,}}\! \right| }} – {A_{45:\mathop {\left. {\overline {\, {20} \,}}\! \right| }\limits^| }}}}{{{}_{20}{E_{45}}}}\left( {\frac{{{{\ddot a}_{45:\left. {\overline {\, {20} \,}}\! \right| }}}}{{{{\ddot a}_{45:\left. {\overline {\, {20} \,}}\! \right| }}}}} \right)\)
\({}_{20}{V_{45}} = {P_{45}}\frac{1}{{{P_{45:\mathop {\left. {\overline {\, {20} \,}}\! \right| }\limits^| }}}} – \frac{{{P_{45:\left. {\overline {\, {20} \,}}\! \right| }} – {P_{45:\mathop {\left. {\overline {\, {20} \,}}\! \right| }\limits^| }}}}{{{P_{45:\mathop {\left. {\overline {\, {20} \,}}\! \right| }\limits^| }}}}\)
\({}_{20}{V_{45}} = (0,014)\frac{1}{{0,022}} – \frac{{0,03 – 0,022}}{{0,022}}\)
\({}_{20}{V_{45}} = \frac{3}{{11}}\,\,\)
\({}_{20}{V_{45}} = 0,27\) |