Pembahasan Soal Ujian Profesi Aktuaris
Institusi |
: |
Persatuan Aktuaris Indonesia (PAI) |
Mata Ujian |
: |
Metoda Statistika |
Periode Ujian |
: |
November 2017 |
Nomor Soal |
: |
22 |
SOAL
Anda mencocokkan model berikut dalam empat pengamatan:
\({Y_i} = {\beta _1} + {\beta _2}{X_{2i}} + {\beta _3}{X_{3i}} + {\varepsilon _i},\) \(i = 1,2,3,4\)
Diberikan data sebagai berikut:
\(i\) |
\({X_{2i}}\) |
\({X_{3i}}\) |
1 |
-4 |
-3 |
2 |
-3 |
4 |
3 |
3 |
-4 |
4 |
4 |
3 |
Estimasi least square dari \({\beta _3}\) dinyatakan sebagai \({\hat \beta _3} = \sum\nolimits_{i = 1}^4 {{w_i}{Y_i}} \)
Tentukan nilai dari \(\left( {{w_1};{w_2};{w_3};{w_4}} \right)\)
- \(\left( { – 0,08; – 0,06;0,06;0,08} \right)\)
- \(\left( { – 0,06;0,08; – 0,08;0,06} \right)\)
- \(\left( {0,06; – 0,08;0,08; – 0,06} \right)\)
- \(\left( { – 0,05;0,10; – 0,10;0,05} \right)\)
- \(\left( {0,05; – 0,10;0,10; – 0,05} \right)\)
Diketahui |
\({Y_i} = {\beta _1} + {\beta _2}{X_{2i}} + {\beta _3}{X_{3i}} + {\varepsilon _i},\) \(i = 1,2,3,4\) dengan data
\(i\) |
\({X_{2i}}\) |
\({X_{3i}}\) |
1 |
-4 |
-3 |
2 |
-3 |
4 |
3 |
3 |
-4 |
4 |
4 |
3 |
|
Rumus yang digunakan |
\({{\hat \beta }_3} = \sum\nolimits_{i = 1}^n {{w_i}{Y_i}} \)
\(= \sum\nolimits_{i = 1}^n {\left[ {\frac{{\left( {{x_i} – \bar x} \right)}}{{\sum\nolimits_{i = 1}^n {{{\left( {{x_i} – \bar x} \right)}^2}} }}} \right]} {Y_i}\) |
Proses pengerjaan |
\({w_i} = \frac{{\left( {{x_{3i}} – {{\bar x}_3}} \right)}}{{\sum\nolimits_{i = 1}^n {{{\left( {{x_{3i}} – {{\bar x}_3}} \right)}^2}} }}\), sehingga
\({\bar x_3} = \frac{{ – 3 + 4 – 4 + 3}}{4} = 0\) dan \(\sum\nolimits_{i = 1}^n {{{\left( {{x_{3i}} – {{\bar x}_3}} \right)}^2}} = {\left( { – 3} \right)^2} + {\left( 4 \right)^2} + {\left( { – 4} \right)^2} + {\left( 3 \right)^2} = 50\)
diperoleh
\({w_1} = \frac{{ – 3}}{{50}} = – 0,06\)
\({w_2} = \frac{4}{{50}} = 0,08\)
\({w_3} = \frac{{ – 4}}{{50}} = – 0,08\)
\({w_4} = \frac{3}{{50}} = 0,06\) |
Jawaban |
b. \(\left( { – 0,06;0,08; – 0,08;0,06} \right)\) |