Diketahui |
- \({\mu _{35 + t}} = 0,03\)
- \(\delta = 0,05\)
- \(1000{\bar A_{\mathop {35}\limits^1 :\left. {\overline {\, {25} \,}}\! \right| }} = 324,25\)
- \({\bar a_{35:\left. {\overline {\, {25} \,}}\! \right| }} = 8,7351\)
|
Step 1 |
\(\,_5^{15}{V_{35:\left. {\overline {\, {25} \,}}\! \right| }} = P \cdot \frac{{{{\bar a}_{35:\left. {\overline {\, 5 \,}}\! \right| }}}}{{_5{E_x}}} – \frac{{{{\bar A}_{\mathop {35}\limits^1 :\left. {\overline {\, 5 \,}}\! \right| }}}}{{_5{E_x}}}\) ………(*) |
Step 2 |
- \({\bar a_{35:\left. {\overline {\, 5 \,}}\! \right| }} = \int_0^5 {{e^{ – \delta t}} \cdot {e^{ – \mu t}}dt} \)
\(= \int_0^5 {{e^{ – \left( {0,05t} \right)}} \cdot {e^{ – \left( {0,03t} \right)}}dt} = \int_0^5 {{e^{ – 0,08t}}dt} \)
\(= \frac{1}{{0,08}}\left[ {1 – {e^{ – 0,08t}}\,\,\left| {_{_0}^{^5}} \right.} \right]\)
\(= \frac{1}{{0,08}}\left[ {\left( {1 – {e^{ – 0,08\left( 5 \right)}}} \right) – \left( {1 – {e^0}} \right)} \right]\)
\(= 4,120999425\)
- \({\bar A_{35:\left. {\overline {\, 5 \,}}\! \right| }} = 1 – \delta \cdot {\bar a_{35:\left. {\overline {\, 5 \,}}\! \right| }}\)
\(= 1 – 0,05\left( {4,120999425} \right)\)
\(= 0,793950028\)
- \(_5{E_x} = {e^{ – \delta t}} \cdot {e^{ – \mu t}}\)
\(= {e^{ – 0,05\left( 5 \right)}} \cdot {e^{ – 0,03\left( 5 \right)}} = 0,6703\)
- \({\bar A_{\mathop {35}\limits^1 :\left. {\overline {\, 5 \,}}\! \right| }} = {\bar A_{35:\left. {\overline {\, 5 \,}}\! \right| }}{ – _5}{E_x}\)
\(= 0,793950028 – 0,6703 = 0,12365\)
- \({\bar A_{35:\left. {\overline {\, {25} \,}}\! \right| }} = {e^{ – \delta t}} \cdot {e^{ – \mu t}} + {\bar A_{\mathop {35}\limits^1 :\left. {\overline {\, {25} \,}}\! \right| }}\)
\(= {e^{ – 0,08\left( {25} \right)}} + 0,32425\)
\(= 0,459585283\)
Maka \(P = \frac{{{{\bar A}_{35:\left. {\overline {\, {25} \,}}\! \right| }}}}{{{{\bar a}_{35:\left. {\overline {\, {25} \,}}\! \right| }}}} = \frac{{0,459585283}}{{8,7351}} = 0,0526136\)
|
Step 3 |
(*)
\(1000\,_5^{15}{V_{35:\left. {\overline {\, {25} \,}}\! \right| }} = 1000\left[ {P \cdot \frac{{{{\bar a}_{35:\left. {\overline {\, 5 \,}}\! \right| }}}}{{_5{E_x}}} – \frac{{{{\bar A}_{\mathop {35}\limits^1 :\left. {\overline {\, 5 \,}}\! \right| }}}}{{_5{E_x}}}} \right]\)
\(= 1000\left[ {0,0526136 \cdot \frac{{4,120999425}}{{0,6703}} – \frac{{0,12365}}{{0,6703}}} \right]\)
\(= 138,998\)
Jawaban yang paling mendekati adalah 139,03
|