Pembahasan Soal Ujian Profesi Aktuaris
| Institusi | : | Persatuan Aktuaris Indonesia (PAI) |
| Mata Ujian | : | Matematika Keuangan |
| Periode Ujian | : | Juni 2015 |
| Nomor Soal | : | 21 |
SOAL
Nilai sekarang dari anuitas segera (due annuity) 25 tahun dengan pembayaran pertama sebesar 2.500 dan menurun sebesar 100 setiap tahunnya adalah Y. Jika diasumsikan tingkat bunga efektif tahunan adalah 10%, hitunglah nilai dari Y! (pembulatan terdekat)
- 11.346
- 13.615
- 15.923
- 17.396
- 18.112
| Diketahui | - n = 25
- i = 10%
- Pembayaran pertama sebesar 2.500 dan menurun sebesar 100 setiap tahunnya adalah Y
|
| Rumus yang digunakan | \({\left( {D\ddot a} \right)_{\left. {\overline {\, n \,}}\! \right| }}_i = (1 + i)\frac{{n – {a_{\left. {\overline {\, n \,}}\! \right| }}_i}}{i}\) |
| Proses pengerjaan |
\(PV = 2500 + Y\)
\(PV = 2500 + 100{\left( {D\ddot a} \right)_{\left. {\overline {\, {25} \,}}\! \right| }}_{10\% }\)
\(Y = 100(1 + 10\% ){\left( {Da} \right)_{\left. {\overline {\, {25} \,}}\! \right| }}_{10\% }\)
\(Y = 100(1 + 10\% )\left( {\frac{{25 – {a_{\left. {\overline {\, {25} \,}}\! \right| }}_{10\% }}}{{10\% }}} \right)\)
\(Y = 17515,26\) |
| Jawaban | Soal dianulir |