Step 1 |
\(Q \cdot {a_{\left. {\overline {\, n \,}}\! \right| i}} = L\)
\(7,66 \cdot {a_{\left. {\overline {\, {16} \,}}\! \right| i}} = 100\)
\(7,66\left( {\frac{{1 – {{(1 + i)}^{ – 16}}}}{i}} \right) = 100\) |
Step 2 |
Dengan trial & error, masukkan opsi A sampai E ke (*). Dengan syarat, bunga (i) didalam opsi A sampai E diubah terlebih dahulu ke konversi bulanan
- untuk i = 22,56%
\({i^{(12)}} = {\left( {1,2256} \right)^{\frac{1}{{12}}}} – 1 = 0,0171\)
Maka, \(7,66\left( {\frac{{1 – {{(1,0171)}^{ – 16}}}}{{0,0171}}} \right) = 100\)
\(106,4347 \ne 100\)
- untuk i = 25%
\({i^{(12)}} = {\left( {1,25} \right)^{\frac{1}{{12}}}} – 1 = 0,01877\)
Maka, \(7,66\left( {\frac{{1 – {{(1,02096)}^{ – 16}}}}{{0,02096}}} \right) = 100\)
\(105,026 \ne 100\)
- untuk i = 28,27%
\({i^{(12)}} = {\left( {1,2827} \right)^{\frac{1}{{12}}}} – 1 = 0,02096\)
Maka, \(7,66\left( {\frac{{1 – {{(1,02096)}^{ – 16}}}}{{0,02096}}} \right) = 100\)
\(103,219 \ne 100\)
- Untuk i = 31,12%
\({i^{(12)}} = {\left( {1,3112} \right)^{\frac{1}{{12}}}} – 1 = 0,0228\)
Maka, \(7,66\left( {\frac{{1 – {{(1,0228)}^{ – 16}}}}{{0,0228}}} \right) = 100\)
\(101,73 \ne 100\)
- Untuk i = 34,49%
\({i^{(12)}} = {\left( {1,3449} \right)^{\frac{1}{{12}}}} – 1 = 0,025\)
Maka, \(7,66\left( {\frac{{1 – {{(1,025)}^{ – 16}}}}{{0,025}}} \right) = 100\)
\(100 = 100\)
|