Pembahasan Soal Ujian Profesi Aktuaris
| Institusi | : | Persatuan Aktuaris Indonesia (PAI) |
| Mata Ujian | : | Matematika Aktuaria |
| Periode Ujian | : | Juni 2015 |
| Nomor Soal | : | 10 |
SOAL
Diberikan sebagai berikut:
- \({A_x} = 0,22\)
- \({A_{x + 20}} = 0,46\)
- \({A_{x:\mathop {\left. {\overline {\, {20} \,}}\! \right| }\limits^1 }} = 0,20\)
- \(i = 0,06\)
Hitunglah \({a_{x:\left. {\overline {\, {25} \,}}\! \right| }}\)
- 9,8
- 10,1
- 10,4
- 10,9
- 11,1
| Diketahui |
|
| Rumus yang digunakan | \({A_{x:\left. {\overline {\, n \,}}\! \right| }} = A_{x:\left. {\overline {\, n \,}}\! \right| }^1 + {A_{x:\mathop {\left. {\overline {\, n \,}}\! \right| }\limits^1 }} = {A_x} – {A_{x:\mathop {\left. {\overline {\, n \,}}\! \right| }\limits^1 }} \cdot {A_{x + n}} + {A_{x:\mathop {\left. {\overline {\, n \,}}\! \right| }\limits^1 }}\) \({\ddot a_{x:\left. {\overline {\, n \,}}\! \right| }} = \frac{{1 – {A_{x:\left. {\overline {\, n \,}}\! \right| }}}}{d}\) dengan \(d = \frac{i}{{1 + i}}\) \({a_{x:\left. {\overline {\, n \,}}\! \right| }} = {\ddot a_{x:\left. {\overline {\, n \,}}\! \right| }} – 1 + {A_{x:\mathop {\left. {\overline {\, n \,}}\! \right| }\limits^1 }}\) |
| Proses pengerjaan | \({A_{x:\left. {\overline {\, {20} \,}}\! \right| }} = {A_x} – {A_{x:\mathop {\left. {\overline {\, {20} \,}}\! \right| }\limits^1 }} \cdot {A_{x + 20}} + {A_{x:\mathop {\left. {\overline {\, {20} \,}}\! \right| }\limits^1 }}\) \({A_{x:\left. {\overline {\, {20} \,}}\! \right| }} = 0.22 – 0.20\left( {0.46} \right) + 0.20 = 0.328\) |
| \({{\ddot a}_{x:\left. {\overline {\, {20} \,}}\! \right| }} = \frac{{1 – {A_{x:\left. {\overline {\, {20} \,}}\! \right| }}}}{d}\) \({{\ddot a}_{x:\left. {\overline {\, {20} \,}}\! \right| }} = \frac{{1 – {A_{x:\left. {\overline {\, {20} \,}}\! \right| }}}}{{\frac{i}{{1 + i}}}}\) \({{\ddot a}_{x:\left. {\overline {\, {20} \,}}\! \right| }} = \frac{{1 – 0.328}}{{\frac{{0.06}}{{1.06}}}} = 11.872\) | |
| \({a_{x:\left. {\overline {\, {20} \,}}\! \right| }} = {{\ddot a}_{x:\left. {\overline {\, {20} \,}}\! \right| }} – 1 + {A_{x:\mathop {\left. {\overline {\, {20} \,}}\! \right| }\limits^1 }}\) \({a_{x:\left. {\overline {\, {20} \,}}\! \right| }} = 11.872 – 1 + 0.20 = 11.072\) | |
| Jawaban | a. 11,1 |


