Pembahasan Soal Ujian Profesi Aktuaris
Institusi |
: |
Persatuan Aktuaris Indonesia (PAI) |
Mata Ujian |
: |
Metoda Statistika |
Periode Ujian |
: |
Juni 2015 |
Nomor Soal |
: |
3 |
SOAL
Berdasarkan soal nomor 2
Tentukan Probability Density Function dari \(X\).
- \({e^{ – x}}\left( {x + 2} \right)\)
- \({e^{ – x}}{x^2}\)
- \({e^{ – x}}{\left( {x + 1} \right)^2}\)
- \(\left( {{e^{ – x}} + 1} \right)x\)
- \({e^{ – x}}x\)
Diketahui |
\(\begin{array}{*{20}{c}} {S\left( x \right) = {e^{ – x}}\left( {x + 1} \right),}&{x \ge 0} \end{array}\) |
Rumus yang digunakan |
\(f\left( x \right) = – \frac{d}{{dx}}S\left( x \right)\) |
Proses pengerjaan |
\(f\left( x \right) = – \frac{d}{{dx}}\left[ {{e^{ – x}}\left( {x + 1} \right)} \right]\)
\(f\left( x \right) = – \frac{d}{{dx}}\left( {x \cdot {e^{ – x}}} \right) – \frac{d}{{dx}}\left( {{e^{ – x}}} \right)\)
\(f\left( x \right) = \left( { – {e^{ – x}} + x{e^{ – x}}} \right) + {e^{ – x}}\)
\(f\left( x \right) = x{e^{ – x}}\) |
Jawaban |
e. \({e^{ – x}}x\) |