Pembahasan Soal Ujian Profesi Aktuaris
Institusi | : | Persatuan Aktuaris Indonesia (PAI) |
Mata Ujian | : | Metoda Statistika |
Periode Ujian | : | November 2014 |
Nomor Soal | : | 16 |
SOAL
Berdasarkan soal nomor 15. Tentukan \(E\left[ X \right]\)
- 60
- 65
- 70
- 75
- Tidak ada jawaban yang benar
Diketahui |
|
Rumus yang digunakan | \(E\left[ X \right] = \int\limits_0^\infty {x \cdot f\left( x \right)dx} = \int\limits_0^\infty {x \cdot {}_x{p_0} \cdot {\mu _x}dx} = \int\limits_0^\infty {{}_x{p_0}dx} \) |
Proses pengerjaan | \(E\left[ X \right] = \int\limits_0^{80} {{}_x{p_0}dx} = \int\limits_0^{80} {\frac{{{{\left( {64 – 0.8x} \right)}^{\frac{1}{3}}}}}{4}dx} \) \({E\left[ X \right] = \frac{1}{4}\int\limits_0^{80} {{{\left( {64 – 0.8x} \right)}^{\frac{1}{3}}}dx} }\) \({{\rm{misal\_}}{u^3} = 64 – 0.8x \Rightarrow 3{u^2}du = – 0.8dx}\) \(E\left[ X \right] = \frac{1}{4}\int\limits_4^0 {u \cdot \left( { – \frac{{3{u^2}}}{{0.8}}} \right)du} \) \(E\left[ X \right] = – \frac{{3.75}}{4}\int\limits_4^0 {{u^3}du} \) \(E\left[ X \right] = – \frac{{3.75}}{4}\left[ {0 – \frac{{{4^4}}}{4}} \right]\) \(E\left[ X \right] = 60\) |
Jawaban | A. 60 |