Pembahasan Soal Ujian Profesi Aktuaris
Institusi | : | Persatuan Aktuaris Indonesia (PAI) |
Mata Ujian | : | A20 – Probabilitas dan Statistika |
Periode Ujian | : | Juni 2016 |
Nomor Soal | : | 2 |
SOAL
Sebuah kotak menyimpan 4 bola merah dan 6 bola putih. Sebuah sampel acak mengambil 3 bola dari kotak tersebut tanpa mengganti bola yang sudah diambil. Berapa peluang bahwa terdapat 1 bola merah dan 2 bola putih, diberikan sedikitnya terdapat 2 bola berwarna putih di sampel acak tersebut?
- 1/2
- 2/3
- 3/4
- 9/11
- 54/55
PEMBAHASAN
Misalkan | M ialah bola merah P ialah bola putih |
Kalkulasi | \(P(M = 1 \cap P = 2|P \ge 2) = \frac{{{}_4{C_1}{}_6{C_2}}}{{{}_4{C_1}{}_6{C_2} + {}_6{C_3}}}\)
\(P(M = 1 \cap P = 2|P \ge 2) = \frac{{60}}{{60 + 20}}\)
\(P(M = 1 \cap P = 2|P \ge 2) = \frac{3}{4}\) |
Jawaban | c. 3/4 |