PEMBAHASAN
\(E[X] = {M_x}'(t){|_{t = 0}}\)
\(E[X] = \)\(\frac{{\partial (\frac{1}{{3(1 – {t_2})}} + \frac{2}{3}{e^{{t_1}}}\frac{2}{{(2 – {t_2})}})}}{{\partial {t_1}}}\) | t
1 = 0, t
2 = 0
\(E[X] = \frac{2}{3}{e^{{t_1}}}\frac{2}{{(2 – {t_2})}}\) | t
1 = 0, t
2 = 0
\(E[X] = \frac{2}{3}\)
\(E[{X^2}] = \frac{{{\partial ^2}(\frac{1}{{3(1 – {t_2})}} + \frac{2}{3}{e^{{t_1}}}\frac{2}{{(2 – {t_2})}})}}{{\partial {t_1}^2}}\) | t
1 = 0, t
2 = 0
\(E[{X^2}] = \frac{{\partial (\frac{2}{3}{e^{{t_1}}}\frac{2}{{(2 – {t_2})}})}}{{\partial {t_1}}}\) | t
1 = 0, t
2 = 0
\(E[{X^2}] = \frac{2}{3}{e^{{t_1}}}\frac{2}{{(2 – {t_2})}}\) | t
1 = 0, t
2 = 0
\(E[{X^2}] = \frac{2}{3}\)
\(Var[X] = \frac{2}{3} – {\left( {\frac{2}{3}} \right)^2}\)
\(Var[X] = \frac{2}{9}\)
Jawaban pada pilihan : D. 2/9