Pembahasan Soal Ujian Profesi Aktuaris
Institusi |
: |
Persatuan Aktuaris Indonesia (PAI) |
Mata Ujian |
: |
Permodelan dan Teori Risiko |
Periode Ujian |
: |
November 2016 |
Nomor Soal |
: |
27 |
SOAL
Diberikan data sebagai berikut:
- Parameter \(\Lambda \) memiliki inverse gamma dengan fungsi kepadatan peluang
\(g\left( \lambda \right) = 500{\lambda ^{ – 4}}\exp \left[ { – \frac{{10}}{\lambda }} \right]\), \(\lambda > 0\)
- Besarnya klaim memiliki distribusi eksponensial dengan fungsi kepadatan peluang
\(f\left( {\left. x \right|\Lambda = \lambda } \right) = {\lambda ^{ – 1}}\exp \left[ { – \frac{x}{\lambda }} \right]\), \(\lambda > 0,x > 0\)
Untuk seorang tertanggung, 2 klaim diamati dengan total klaim sebesar 50
Tentukan nilai ekspektasi untuk klaim berikutnya untuk tertanggung yang sama
- 5
- 12
- 15
- 20
- 25
Diketahui |
Diberikan data sebagai berikut:
- Parameter \(\Lambda \) memiliki inverse gamma dengan fungsi kepadatan peluang
\(g\left( \lambda \right) = 500{\lambda ^{ – 4}}\exp \left[ { – \frac{{10}}{\lambda }} \right]\), \(\lambda > 0\)
- Besarnya klaim memiliki distribusi eksponensial dengan fungsi kepadatan peluang
\(f\left( {\left. x \right|\Lambda = \lambda } \right) = {\lambda ^{ – 1}}\exp \left[ { – \frac{x}{\lambda }} \right]\), \(\lambda > 0,x > 0\)
Untuk seorang tertanggung, 2 klaim diamati dengan total klaim sebesar 50 |
Rumus yang digunakan |
- \({\pi _{\left. \Theta \right|X}}\left( {\left. \theta \right|x} \right) = {f_{\left. X \right|\Theta }}\left( {\left. x \right|\theta } \right) \cdot {\pi _\Theta }\left( \theta \right)\)
- Inverse Gamma: \(f\left( x \right) = \frac{{{\theta ^\alpha }{x^{ – \alpha – 1}}}}{{\Gamma \left( \alpha \right)}} \cdot \exp \left[ { – \frac{\theta }{x}} \right]\)
- \(E\left[ X \right] = \frac{\theta }{{\alpha – 1}}\)
|
Proses pengerjaan |
\(\pi \left( {\left. \lambda \right|{x_1} = 25,{x_2} = 25} \right)\)
\(= \left( {{\lambda ^{ – 1}}\exp \left[ { – \frac{{25}}{\lambda }} \right]} \right)\left( {{\lambda ^{ – 1}}\exp \left[ { – \frac{{25}}{\lambda }} \right]} \right)\left( {500{\lambda ^{ – 4}}\exp \left[ { – \frac{{10}}{\lambda }} \right]} \right)\)
\(\pi \left( {\left. \lambda \right|{x_1} = 25,{x_2} = 25} \right) = 500{\lambda ^{ – 6}}xp\left[ { – \frac{{60}}{\lambda }} \right] \propto {\lambda ^{ – 6}}xp\left[ { – \frac{{60}}{\lambda }} \right]\) |
|
Diperoleh PDF dari posterior berdistribusi inverse gamma dengan \(\alpha = 6 – 1 = 5\) dan \(E\left[ X \right] = \frac{{60}}{{5 – 1}} = 15\) sehingga diperoleh
\(Var\left( \lambda \right) = \left( 3 \right){\left( {\frac{3}{4}} \right)^2} = \frac{{27}}{{16}}\) |
Jawaban |
C. 15 |