Pembahasan Soal Ujian Profesi Aktuaris
Institusi | : | Persatuan Aktuaris Indonesia (PAI) |
Mata Ujian | : | Metoda Statistika |
Periode Ujian | : | November 2014 |
Nomor Soal | : | 4 |
SOAL
Sebuah Survival Distribution didefinisikan sebagai \(S\left( t \right) = 0,10{\left( {100 – t} \right)^{\frac{1}{2}}}\) , di dalam daerah domain \(0 \le t \le 100\) . Tentukan \(Var\left( T \right)\)
- 333,33
- 666,67
- 777,78
- 889,77
- 998,89
Diketahui | Sebuah Survival Distribution didefinisikan sebagai \(S\left( t \right) = 0,10{\left( {100 – t} \right)^{\frac{1}{2}}}\) , di dalam daerah domain \(0 \le t \le 100\) . |
Rumus yang digunakan | - \(Var\left( T \right) = E\left[ {{T^2}} \right] – E{\left[ T \right]^2}\)
- \(E\left[ T \right] = \int\limits_0^\infty {S\left( t \right)dt} \)
- \(E\left[ {{T^2}} \right] = \int\limits_0^\infty {{t^2} \cdot f\left( t \right)dt} \)
- \(f\left( t \right) = – \frac{d}{{dx}}S\left( t \right)\)
|
Proses pengerjaan | - \(f\left( t \right) = – \frac{d}{{dt}}S\left( t \right) = – \frac{d}{{dt}}0.10{\left( {100 – t} \right)^{\frac{1}{2}}} = \frac{1}{{20\sqrt {100 – t} }}\)
- \(E\left[ T \right] = \int\limits_0^\infty {S\left( t \right)dt} = \int\limits_0^{100} {0.10{{\left( {100 – t} \right)}^{\frac{1}{2}}}dt} \)
\({E\left[ T \right] = 0.10\int\limits_{\sqrt {100} }^0 { – 2{u^2}dt} }\)
\({{\rm{misal }}{u^2} = 100 – t \Rightarrow 2udu = – dt}\)
\(E\left[ T \right] = – 0.20\left[ {0 – \frac{{{{\left( {\sqrt {100} } \right)}^3}}}{3}} \right] = \frac{{200}}{3}\)
- \(E\left[ {{T^2}} \right] = \int\limits_0^\infty {{t^2} \cdot f\left( t \right)dt} = \int\limits_0^{100} {\frac{{{t^2}}}{{20\sqrt {100 – t} }}dt} \)
\({E\left[ {{T^2}} \right] = \frac{1}{{20}}\int\limits_{\sqrt {100} }^0 {\frac{{ – 2u{{\left( {100 – {u^2}} \right)}^2}}}{u}du} }\)
\({{\rm{misal\_}}{u^2} = 100 – t \Rightarrow 2udu = – dt}\)
\(E\left[ {{T^2}} \right] = \frac{1}{{20}}\int\limits_{\sqrt {100} }^0 {\left[ { – 2{u^4} + 400{u^2} – 20,000} \right]du} \)
\(E\left[ {{T^2}} \right] = \frac{1}{{20}}\left[ { – \frac{{2{u^5}}}{5} + \frac{{400{u^3}}}{3} – 20,000u} \right]_{\sqrt {100} }^0\)
\(E\left[ {{T^2}} \right] = \frac{1}{{20}}\left[ {0 + 40,000 – \frac{{400,000}}{3} + 200,000} \right] = \frac{{16,000}}{3}\)
- \(Var\left( T \right) = E\left[ {{T^2}} \right] – E{\left[ T \right]^2} = \frac{{16,000}}{3} – {\left( {\frac{{200}}{3}} \right)^2} = 888.888889\)
|
Jawaban | D. 889,77 |