Pembahasan Soal Ujian Profesi Aktuaris
Institusi |
: |
Persatuan Aktuaris Indonesia (PAI) |
Mata Ujian |
: |
Pemodelan dan Teori Risiko |
Periode Ujian |
: |
Mei 2017 |
Nomor Soal |
: |
9 |
SOAL
Diberikan data sebagai berikut:
- Sampel kerugian berukuran 15 adalah sbb:
11 |
22 |
22 |
22 |
36 |
51 |
69 |
69 |
69 |
92 |
92 |
120 |
161 |
161 |
230 |
- \({\hat H_1}\left( x \right)\) adalah taksiran empiris Nelson Aalen dari fungsi kumulatif hazard rate.
- \({\hat H_2}\left( x \right)\) adalah taksiran maksimum likelihood dari fungsi kumulatif hazard rate dengan asumsi sampel diambil dari sebuah distribusi exponensial.
Hitung \(\left| {{{\hat H}_2}\left( {75} \right) – {{\hat H}_1}\left( {75} \right)} \right|\)
- 0,11
- 0,22
- 0,33
- 0,44
- 0,55
Diketahui |
Diberikan data sebagai berikut:
- Sampel kerugian berukuran 15 adalah sbb:
11 |
22 |
22 |
22 |
36 |
51 |
69 |
69 |
69 |
92 |
92 |
120 |
161 |
161 |
230 |
- \({\hat H_1}\left( x \right)\) adalah taksiran empiris Nelson Aalen dari fungsi kumulatif hazard rate.
- \({\hat H_2}\left( x \right)\) adalah taksiran maksimum likelihood dari fungsi kumulatif hazard rate dengan asumsi sampel diambil dari sebuah distribusi exponensial.
|
Rumus yang digunakan |
Nelson-Aalen: \(\begin{array}{*{20}{c}} {\hat H\left( t \right) = \sum\limits_{i = 1}^{j – 1} {\frac{{{s_i}}}{{{r_i}}}} }&{{y_{j – 1}} \le t < {y_j}} \end{array}\)
Maximum Likelihood Exponential; \(\hat \theta = \bar x = \frac{{\sum {{x_i}} }}{n}\); \(S\left( x \right) = \exp \left[ { – \frac{x}{\theta }} \right]\); \(H\left( x \right) = – \ln \left( {S\left( x \right)} \right)\) |
Proses pengerjaan |
Untuk \(t = 15\) diperoleh tabel mortalita
\({y_i}\) |
\({r_i}\) |
\({s_i}\) |
11 |
15 |
1 |
22 |
14 |
3 |
36 |
11 |
1 |
51 |
10 |
1 |
69 |
9 |
3 |
|
|
\({\hat H_1}\left( {75} \right) = \sum\limits_{i = 1}^{j – 1} {\frac{{{s_i}}}{{{r_i}}}} = \frac{1}{{15}} + \frac{3}{{14}} + \frac{1}{{11}} + \frac{1}{{10}} + \frac{3}{9} = 0.805195\) |
|
\(\hat \theta = \frac{{11 + 3\left( {22} \right) + 36 + 51 + 3\left( {69} \right) + 2\left( {92} \right) + 120 + 2\left( {161} \right) + 230}}{{15}} = \frac{{1227}}{{15}} = 81.8\)
\({\hat H_2}\left( {75} \right) = – \ln \left( {\exp \left[ { – \frac{{75}}{{81.8}}} \right]} \right) = 0.916870\) |
|
\(\left| {{{\hat H}_2}\left( {75} \right) – {{\hat H}_1}\left( {75} \right)} \right| = \left| {0.916870 – 0.805195} \right| = 0.111675\) |
Jawaban |
a. 0,11 |