Pembahasan Soal Ujian Profesi Aktuaris
Institusi |
: |
Persatuan Aktuaris Indonesia (PAI) |
Mata Ujian |
: |
Pemodelan dan Teori Risiko |
Periode Ujian |
: |
Mei 2017 |
Nomor Soal |
: |
11 |
SOAL
Sebuah perusahaan asuransi mempunyai 2(dua) jenis klaim asuransi. Untuk setiap jenis klaim tersebut, banyaknya klaim mengikuti distribusi Poisson dan besarnya klaim berdistribusi secara seragam (uniform) sebagai berikut:
Jenis Klaim |
Parameter Poisson \(\lambda \) untuk jumlah klaim |
Range dari masing-masing besaran klaim |
I |
12 |
(0, 1) |
II |
4 |
(0, 5) |
Banyaknya klaim dari dua jenis pertanggungan saling bebas (independent) serta besarnya klaim dan banyaknya klaim saling bebas.
Hitunglah probabilitas nilai total klaim melebihi 18 dengan menggunakan aproksimasi normal.
- 0,37
- 0,39
- 0,41
- 0,43
- 0,45
Diketahui |
Sebuah perusahaan asuransi mempunyai 2(dua) jenis klaim asuransi. Untuk setiap jenis klaim tersebut, banyaknya klaim mengikuti distribusi Poisson dan besarnya klaim berdistribusi secara seragam (uniform) sebagai berikut:
Jenis Klaim |
Parameter Poisson \(\lambda \) untuk jumlah klaim |
Range dari masing-masing besaran klaim |
I |
12 |
(0, 1) |
II |
4 |
(0, 5) |
Banyaknya klaim dari dua jenis pertanggungan saling bebas (independent) serta besarnya klaim dan banyaknya klaim saling bebas. |
Rumus yang digunakan |
Uniform: \(E\left[ X \right] = \frac{{b – a}}{2}\) ; \(Var\left( X \right) = \frac{{{{\left( {b – a} \right)}^2}}}{{12}}\)
Agregat: \(E\left[ S \right] = E\left[ N \right]E\left[ X \right]\) dan \(Var\left[ S \right] = E\left[ N \right]Var\left[ X \right] + Var\left[ N \right]E{\left[ X \right]^2}\)
\(P\left( {S \le s} \right) = \Phi \left( {\frac{{S – E\left[ S \right]}}{{\sqrt {Var\left( S \right)} }}} \right)\) |
Proses pengerjaan |
Untuk masing-masing jenis klaim (berdistribusi uniform)
- \(E\left[ {{X_I}} \right] = \frac{1}{2}\) dan \(Var\left( {{X_I}} \right) = \frac{1}{{12}}\)
- \(E\left[ {{X_{II}}} \right] = \frac{5}{2}\) dan \(Var\left( {{X_{II}}} \right) = \frac{{25}}{{12}}\)
|
|
Aggregat masing-masing jenis klaim
- \(E\left[ {{S_I}} \right] = 12\left( {\frac{1}{2}} \right) = 6\) dan \(Var\left( {{S_I}} \right) = 12\left( {\frac{1}{{12}}} \right) + 12{\left( {\frac{1}{2}} \right)^2} = 4\)
- \(E\left[ {{S_{II}}} \right] = 4\left( {\frac{5}{2}} \right) = 10\) dan \(Var\left( {{S_{II}}} \right) = 4\left( {\frac{{25}}{{12}}} \right) + 4{\left( {\frac{5}{2}} \right)^2} = \frac{{100}}{3}\)
|
|
DIketahui total klaim \(S = {S_I} + {S_{II}}\) diperoleh
\(E\left[ S \right] = 6 + 10 = 16\) dan \(Var\left( S \right) = 4 + \frac{{100}}{3} = \frac{{112}}{3}\) |
|
Peluang menggunakan aproksimasi normal
\(P\left( {S > 18} \right) = 1 – \Phi \left( {\frac{{18 – 16}}{{\sqrt {\frac{{112}}{3}} }}} \right) = 1 – \Phi \left( {0.33} \right) = 1 – 0.06293 = 0.3707\) |
Jawaban |
a. 0,37 |
I do not even know the way I stopped up right here, but
I believed this publish was once great. I don’t recognise who you’re but certainly you are going to a famous
blogger when you are not already. Cheers!
Hello there, just became aware of your blog through Google, and found that it
is truly informative. I am gonna watch out for brussels. I’ll appreciate if you continue this in future.
Lots of people will be benefited from your writing.
Cheers!
Thanks for sharing such a nice thought, paragraph is pleasant,
thats why i have read it entirely
Hurrah, that’s what I was seeking for, what a stuff! present here at this weblog,
thanks admin of this website.
It’s very easy to find out any topic on web as compared to textbooks, as I found this piece of writing at this web page. Это сообщение отправлено с сайта https://ru.gototop.ee/
I like that the bulletin board offers options for both local pickup and shipping, accommodating different buyer preferences.
Thanks for published,hoping to see more high quality article like this.
바카라
Good article. I absolutely love this site. Keep writing!
Nice read, I just passed this onto a friend who was doing a little research on that. And he just bought me lunch since I found it for him smile So let me rephrase that: Thank you for lunch!