Proses pengerjaan |
\({A^2} = – N – \frac{S}{N}\) dengan \(S = \sum\limits_{i = 1}^N {(2i – 1)\left[ {\ln F({X_i}) + \ln (1 – {F_{N + 1}}_{ – i})} \right]} \)
\(i\) |
\({X_i}\) |
\({Z_i}\) |
\(\Phi ({Z_i})\) |
\(1 – \Phi ({Z_i})\) |
Sorted
\(1 – \Phi ({Z_i})\) |
\({k_i}\) |
1 |
7 |
-1,5774 |
0,0574 |
0,9426 |
0,016 |
-6,9929 |
2 |
12 |
-1,173 |
0,1204 |
0,8796 |
0,1761 |
-11,5609 |
3 |
15 |
-0,9303 |
0,1761 |
0,8239 |
0,2995 |
-14,7117 |
4 |
19 |
-0,6067 |
0,272 |
0,728 |
0,3885 |
-15,7319 |
5 |
26 |
-0,0404 |
0,4839 |
0,5161 |
0,4119 |
-14,3425 |
6 |
27 |
0,0404 |
0,5161 |
0,4839 |
0,4119 |
-16,8211 |
7 |
29 |
0,2022 |
0,5801 |
0,4199 |
0,4839 |
-16,5156 |
8 |
29 |
0,2022 |
0,5802 |
0,4199 |
0,5161 |
-18,0901 |
9 |
30 |
0,2831 |
0,6115 |
0,3885 |
0,728 |
-13,758 |
10 |
33 |
0,5258 |
0,7005 |
0,2995 |
0,8239 |
-10.4437 |
11 |
38 |
0,9303 |
0,8239 |
0,1761 |
0,8796 |
-6,7619 |
12 |
53 |
2,1437 |
0,984 |
0,016 |
0,9426 |
-1,7306 |
Dengan rata-rata = \(\bar X = 26,5\), standar deviasi
\(s = 12,362\)
\({Z_i} = \frac{{{X_i} – \bar X}}{s}\)
\(\Phi ({Z_i}) = norm.\_dist({Z_i})\)
\({\rm{ }}S = \sum\limits_{i = 1}^N {(2i – 1)\left[ {\ln F({X_i}) + \ln (1 – {F_{N + 1}}_{ – i})} \right]} = \sum\limits_{i = 1}^{12} {{k_i} = – 147,461} \)
\({A^2} = – N – \frac{S}{N}{\rm{ = }} – 12 + \frac{{147,461}}{{12}}\)
\({A^2} = 0,288415\)
\(A = 0,537043\) |