Rumus |
Retrospektif, \({}_n{V_x} = {P_x}\,{\ddot S_{x:\left. {\overline {\, n \,}}\! \right| }} – {}_n{K_x}\)
\({\ddot S_{x:\left. {\overline {\, n \,}}\! \right| }} = \frac{{{{\ddot a}_{x:\left. {\overline {\, n \,}}\! \right| }}}}{{{}_n{E_x}}}\,\)
\({}_n{K_x} = \frac{{{A_{\mathop x\limits^| :\left. {\overline {\, n \,}}\! \right| }}}}{{{}_n{E_x}}}\)
\({P_{\mathop x\limits^| :\left. {\overline {\, n \,}}\! \right| }} = \frac{{{A_{\mathop x\limits^| :\left. {\overline {\, n \,}}\! \right| }}}}{{{{\ddot a}_{x:\left. {\overline {\, n \,}}\! \right| }}}}\) |
Step 1 |
\({}_n{V_x} = {P_x}\,{\ddot S_{x:\left. {\overline {\, n \,}}\! \right| }} – {}_n{K_x}\)
\({}_n{V_x} = {P_x}\,\left( {\frac{{{{\ddot a}_{x:\left. {\overline {\, n \,}}\! \right| }}}}{{{}_n{E_x}}}} \right) – \left( {\frac{{{A_{\mathop x\limits^| :\left. {\overline {\, n \,}}\! \right| }}}}{{{}_n{E_x}}}} \right)\)
\({}_n{V_x} = {P_x}\,\left( {\frac{1}{{\frac{{{}_n{E_x}}}{{{{\ddot a}_{x:\left. {\overline {\, n \,}}\! \right| }}}}}}} \right) – \left( {\frac{{{A_{\mathop x\limits^| :\left. {\overline {\, n \,}}\! \right| }}}}{{{}_n{E_x}}}\left( {\frac{{{{\ddot a}_{x:\left. {\overline {\, n \,}}\! \right| }}}}{{{{\ddot a}_{x:\left. {\overline {\, n \,}}\! \right| }}}}} \right)} \right)\)
\({}_n{V_x} = {P_x}\,\left( {\frac{1}{{{P_{x:\mathop {\left. {\overline {\, n \,}}\! \right| }\limits^| }}}}} \right) – \left( {\frac{{{A_{\mathop x\limits^| :\left. {\overline {\, n \,}}\! \right| }}}}{{{{\ddot a}_{x:\left. {\overline {\, n \,}}\! \right| }}}}\left( {\frac{1}{{\frac{{{}_n{E_x}}}{{{{\ddot a}_{x:\left. {\overline {\, n \,}}\! \right| }}}}}}} \right)} \right)\)
\({}_n{V_x} = {P_x}\,\left( {\frac{1}{{{P_{x:\mathop {\left. {\overline {\, n \,}}\! \right| }\limits^| }}}}} \right) – \left( {{P_{\mathop x\limits^| :\left. {\overline {\, n \,}}\! \right| }}\left( {\frac{1}{{{P_{x:\mathop {\left. {\overline {\, n \,}}\! \right| }\limits^| }}}}} \right)} \right)\)
\({}_n{V_x} = \frac{{{P_x} – {P_{\mathop x\limits^| :\left. {\overline {\, n \,}}\! \right| }}}}{{{P_{x:\mathop {\left. {\overline {\, n \,}}\! \right| }\limits^| }}}}\,\)
\(0,563 = \frac{{0,090 – {P_{\mathop x\limits^| :\left. {\overline {\, n \,}}\! \right| }}}}{{0,00864}}\,\)
\({P_{\mathop x\limits^| :\left. {\overline {\, n \,}}\! \right| }} = 0,090 – 0,563\left( {0,00864} \right)\,\)
\({P_{\mathop x\limits^| :\left. {\overline {\, n \,}}\! \right| }} = {\rm{0}}{\rm{,08513568}}\)
\({P_{\mathop x\limits^| :\left. {\overline {\, n \,}}\! \right| }} \cong {\rm{0}}{\rm{,085}}\) |