PEMBAHASAN
Diketahui
\({P_x} = 0,90\)
\(_n{V_x} = 0,563\)
\({P_{x:\mathop {\left. {\overline {\, n \,}}\! \right| }\limits^1 }} = 0,00864\)
Akan dicari nilai \({P_{\mathop x\limits^1 :\left. {\overline {\, n \,}}\! \right| }}\) dengan metode retrospektif
Maka,
\(_n{V_x} = \frac{{{P_x} – {P_{\mathop {x:}\limits^1 \left. {\overline {\, n \,}}\! \right| }}}}{{{P_{x:\mathop {\left. {\overline {\, n \,}}\! \right| }\limits^1 }}}}\)
\(_n{V_x} \cdot {P_{x:\mathop {\left. {\overline {\, n \,}}\! \right| }\limits^1 }} = {P_x} – {P_{\mathop {x:}\limits^1 \left. {\overline {\, n \,}}\! \right| }}\)
\(\left( {_n{V_x} \cdot {P_{x:\mathop {\left. {\overline {\, n \,}}\! \right| }\limits^1 }}} \right) – {P_x} = – {P_{\mathop {x:}\limits^1 \left. {\overline {\, n \,}}\! \right| }}\)
\({P_{\mathop {x:}\limits^1 \left. {\overline {\, n \,}}\! \right| }} = {P_x} – \left( {_n{V_x} \cdot {P_{x:\mathop {\left. {\overline {\, n \,}}\! \right| }\limits^1 }}} \right)\)
Sehingga,
\({P_{\mathop {x:}\limits^1 \left. {\overline {\, n \,}}\! \right| }} = {P_x} – \left( {_n{V_x} \cdot {P_{x:\mathop {\left. {\overline {\, n \,}}\! \right| }\limits^1 }}} \right)\)
\({P_{\mathop {x:}\limits^1 \left. {\overline {\, n \,}}\! \right| }} = 0,09 – \left( {0,563 \times 0,00864} \right)\)
\({P_{\mathop {x:}\limits^1 \left. {\overline {\, n \,}}\! \right| }} = 0,08514\)
Jawaban pada pilihan: C. 0,08514