Pembahasan Soal Ujian Profesi Aktuaris
Institusi |
: |
Persatuan Aktuaris Indonesia (PAI) |
Mata Ujian |
: |
Metoda Statistika |
Periode Ujian |
: |
Juni 2016 |
Nomor Soal |
: |
9 |
SOAL
Dalam sebuah model triple-decrement untuk seseorang yang sekarang berumur \(x\), diketahui constant force of decrement sebagai berikut:
- \(\mu _{x + t}^{\left( 1 \right)} = b,\) untuk \(t \ge 0\)
- \(\mu _{x + t}^{\left( 2 \right)} = b,\) untuk \(t \ge 0\)
- \(\mu _{x + t}^{\left( 3 \right)} = 2b,\) untuk \(t \ge 0\)
Probabilitas orang tersebut akan keluar dari kelompok dalam 4 tahun karena decrement (1) adalah 0,0155.
Hitunglah berapa lama seseorang yang sekarang berumur diharapkan tetap berada dalam table triple decrement (yaitu E [T])?
- 83,33
- 79,65
- 72,77
- 68,15
- 62,50
Diketahui |
\(\mu _{x + t}^{\left( 1 \right)} = b,\) untuk \(t \ge 0\)
\(\mu _{x + t}^{\left( 2 \right)} = b,\) untuk \(t \ge 0\)
\(\mu _{x + t}^{\left( 3 \right)} = 2b,\) untuk \(t \ge 0\)
Probabilitas orang tersebut akan keluar dari kelompok dalam 4 tahun karena decrement (1) adalah 0,0155 |
Rumus yang digunakan |
\(\mu _{x + t}^{\left( \tau \right)} = \mu _{x + t}^{\left( 1 \right)} + \mu _{x + t}^{\left( 2 \right)} + \mu _{x + t}^{\left( 3 \right)}\)
\({}_tp_x^{\left( \tau \right)} = \exp \left( { – \int\limits_0^t {\mu _x^{\left( \tau \right)}\left( s \right)ds} } \right)\)
\({f_{T,J}}\left( {t,j} \right) = {}_tp_x^{\left( \tau \right)}\mu _x^{\left( j \right)}\left( t \right)\)
\(_tq_x^{\left( j \right)} = \int\limits_0^t {{f_{T,J}}\left( {s,j} \right)ds} \)
\(E\left[ T \right] = \int\limits_0^\infty {{}_tp_x^{\left( \tau \right)}dt} \) |
Proses pengerjaan |
\(\mu _{x + t}^{\left( \tau \right)} = \mu _{x + t}^{\left( 1 \right)} + \mu _{x + t}^{\left( 2 \right)} + \mu _{x + t}^{\left( 3 \right)}\)
\(= b + b + 2b\)
\(= 4b\) |
\({}_tp_x^{\left( \tau \right)} = \exp \left( { – \int\limits_0^t {\mu _x^{\left( \tau \right)}\left( s \right)ds} } \right)\)
\(= \exp \left( { – \int\limits_0^t {4bds} } \right)\)
\(= \exp ( – 4bt)\) |
\(_tq_x^{\left( 1 \right)} = \int\limits_0^4 {{f_{T,J}}\left( {s,j} \right)ds} \)
\(= \int\limits_0^4 {{}_sp_x^{\left( \tau \right)}\mu _{x + s}^{\left( 2 \right)}\left( s \right)ds} \)
\(0,0155 = \int\limits_0^4 {b \cdot \exp \left( { – 4bs} \right)ds} ,\) misal \(u = – 4bs\) maka \(du = – 4b \cdot ds\)
\(= – b \cdot \int\limits_0^{ – 16b} {\frac{{\exp \left( u \right)}}{{4b}}du} \)
\(0,0155 = \frac{1}{4} – \frac{{\exp \left( { – 16b} \right)}}{4}\)
\(\exp \left( { – 16b} \right) = 0,938\)
\(b = \frac{{\ln \left( {0,938} \right)}}{{ – 16}}\)
\(= 0,004\) |
\(E\left[ T \right] = \int\limits_0^\infty {{}_tp_x^{\left( \tau \right)}dt} \)
\(= \int\limits_0^\infty {\exp \left( { – 4 \cdot 0,004 \cdot t} \right)dt} \)
\(= \int\limits_0^\infty {\exp \left( { – \frac{{16}}{{1000}}t} \right)dt} \)
\(= – \frac{{125}}{2} \cdot \left. {\exp \left( { – \frac{2}{{125}}t} \right)} \right|_0^\infty \)
\(= 62,5\) |
Jawaban |
e. 62,50 |