Pembahasan Soal Ujian Profesi Aktuaris
Institusi | : | Persatuan Aktuaris Indonesia (PAI) |
Mata Ujian | : | Metoda Statistika |
Periode Ujian | : | Mei 2018 |
Nomor Soal | : | 15 |
SOAL
Diberikan
- \(j(x) = {1.3^{x – 100}}\)
- \({\mu _x} = \frac{{j(x)}}{{1 + j(x)}}\)
Hitunglah \(\frac{{{q_{103}}}}{{{q_{102}}}}\)
- 1.01
- 1.02
- 1.03
- 1.04
- 1.06
Diketahui | - \(j(x) = {1.3^{x – 100}}\)
- \({\mu _x} = \frac{{j(x)}}{{1 + j(x)}} = \frac{{{{1.3}^{x – 100}}}}{{1 + {{1.3}^{x – 100}}}}\)
|
Rumus yang digunakan | \(_n{p_x} = \exp ( – \int\limits_x^{x + n} {{\mu _x}{\rm{ }}dx)} \) |
Proses pengerjaannya | \({p_{103}} = \exp ( – \int\limits_{103}^{104} {\frac{{{{1.3}^{x – 100}}}}{{1 + {{1.3}^{x – 100}}}}{\rm{ }}dx) = 0.48947} \)
\({p_{102}} = \exp ( – \int\limits_{102}^{103} {\frac{{{{1.3}^{x – 100}}}}{{1 + {{1.3}^{x – 100}}}}{\rm{ }}dx) = 0.51782} \)
\(\frac{{{q_{103}}}}{{{q_{102}}}} = \frac{{1 – {p_{103}}}}{{1 – {p_{102}}}} = \frac{{1 – 0.48947}}{{1 – 0.51782}} = 1.058 = 1.06\) |
Jawaban | e. 1.06 |